Computation of Moments of $K_{\nu}(t) / I_{\nu}(t)^{*}$

By Jerry Allan Roberts

During the course of some recent research [3] it became necessary to compute certain values of $M_{n}{ }^{(1)}$, where

$$
\begin{equation*}
M_{n}^{(\nu)} \equiv \int_{0}^{\infty} t^{n} \frac{K_{\nu}(t)}{I_{\nu}(t)} d t . \dagger \tag{1}
\end{equation*}
$$

Values of a related function,

$$
(n!)^{-2} I(2 n) \equiv \frac{2 n+1}{(n!)^{2}} \int_{0}^{\infty} t^{2 n} \frac{K_{1}(t)}{I_{1}(t)} d t
$$

had been tabulated by Smythe [5]. These values were used in checking the computed values. When disagreements were encountered, it was decided to investigate the problem more thoroughly. Smythe has since corrected the errors discovered in [5] (see [7]). Smythe's corrected values are in agreement with the values tabulated herein. Smythe also has tabulated values of a function related to $M_{2 n}^{(0)}$. These values first were given (with some errors) in [4] and subsequently were corrected in [6]. Another related function

$$
H_{k}=\frac{(-1)^{k}}{(2 k)!} \frac{2}{\pi} \int_{0}^{\infty} t^{2 k} \frac{K_{1}(t)}{I_{1}(t)} d t
$$

is tabulated, for $k=1(1) 12$, by Brenner and Sonshine [1]. A comparison of the values given in [1] with those tabulated herein reveals agreement to seven significant digits in most entries, although the entry for $k=9$ (and $n=2 k=18$) differs by five units in the sixth significant digit. The author recently has obtained a copy of a report by Haberman and Harley [2] in which values of the function defined in (1), with $\nu=1$, are tabulated for $n=1(1) 20$. These values, for $n=$ $2(1) 17$, agree to four significant digits with those tabulated herein, as do the values for $n=18(1) 20$ after removal of an extraneous factor of 10 . However the value tabulated in [2] for $n=1$ is completely in error.

It is observed that convergence of (1) requires that $n>2|\nu|-1$. If n satisfies this requirement, integration by parts in (1) with

$$
u=K_{\nu}(t) / I_{\nu}(t), \quad d v=t^{n} d t
$$

and use of the Wronskian

$$
\begin{equation*}
I_{\nu}(t) K_{\nu}^{\prime}(t)-I_{\nu}^{\prime}(t) K_{\nu}(t)=-\frac{1}{t} \tag{2}
\end{equation*}
$$

[^0](see Watson [9], p. 80) yields
\[

$$
\begin{equation*}
M_{n}^{(0)}=\frac{1}{n+1} \int_{0}^{\infty} \frac{t^{n} d t}{I_{v}^{2}(t)} \tag{3}
\end{equation*}
$$

\]

If \boldsymbol{n} is even, this integral can be evaluated by a method due to Watson [8].
It is observed that if ν is a non-negative integer, (3) is much better suited for numerical integration than is (1), whose integrand has a logarithmic singularity in the higher derivatives at the origin.

Investigation of the integrand of (1) reveals that for large values of n the integrand attains its maximum value near $n / 2$. Thus, as n increases, the significant portion of the integrand occurs at increasingly larger values of t. This suggests that, if n is large enough, the use of a few terms of the asymptotic approximation for $K_{\nu}(t)$ and $I_{\nu}(t)$ in (1) might yield a reasonable approximation of $M_{n}{ }^{(\nu)}$. Such an "asymptotic" expansion is purely formal, and a rigorous analysis of its approximative properties has not been feasible thus far. However, in the case $\nu=1$, the expansion so obtained has been verified numerically and was found to produce results correct to eight significant digits for $n \geqq 22$. The expansion, for $\nu=1$, was obtained by division of the asymptotic expansion for $K_{1}(t)$ by that for $I_{1}(t)$ (see Watson [9], pp. 202, 203), to obtain

$$
\begin{equation*}
\frac{K_{1}(t)}{I_{1}(t)} \sim \pi e^{-2 t}\left[1+\frac{a_{1}}{t}+\frac{a_{2}}{t^{2}}+\cdots+\frac{a_{12}}{t^{12}}\right] . \tag{4}
\end{equation*}
$$

The values of $a_{1}, a_{2}, \cdots, a_{12}$ are given in Table 1. Multiplication of (4) by t^{n} and formal integration over $(0, \infty)$ yields

$$
\begin{equation*}
M_{n}{ }^{(1)} \sim \frac{\pi}{2} \frac{n!}{2^{n}}\left[1+\frac{b_{1}}{n}+\frac{b_{2}}{n(n-1)}+\cdots+\frac{b_{12}}{n(n-1) \cdots(n-11)}\right] . \tag{5}
\end{equation*}
$$

The resulting values of $b_{1}, b_{2}, \cdots, b_{12}$ also are given in Table 1. A different ex-
Table 1
Coefficients of the asymptotic expansions for $K_{1}(t) / I_{1}(t)$ and for $M_{n}{ }^{(1)}$

n	a_{n}					b_{n}			
1	7.5	0000	0000	$(-1)^{*}$	1.5	0000	0000	(0)	
2	2.8	1250	0000	(-1)	1.1	2500	0000	(0)	
3	3.9	8437	5000	(-1)	3.1	8750	0000	(0)	
4	2.5	9277	3438	(-1)	4.1	4843	7500	(0)	
5	8.3	6059	5703	(-1)	2.6	7539	0625	(1)	
6	6.3	3499	1455	(-1)	4.0	5439	4531	(1)	
7	4.9	9215	3168	(0)	6.3	8995	6055	(2)	
8	3.8	6544	8356	(0)	9.8	9554	7791	(2)	
9	6.2	7828	9583	(1)	3.2	1448	4266	(4)	
10	4.8	1743	2137	(1)	4.9	3305	0508	(4)	
11	1.3	3709	0455	(3)	2.7	3836	1252	(6)	
12	1.0	1725	4727	(3)	4.1	6667	5362	(6)	

[^1]Table 2
Values of $M_{n}{ }^{(1)}$

pansion, obtained by the substitution of the asymptotic expansion for $\left[I_{1}(t)\right]^{-2}$ into equation (3), is given in [1]. This expansion and the one given in equation (5) above are equivalent for large values of n.

A table of values for $M_{n}{ }^{(1)}$, for $n=1,2, \cdots, 100$ is given in Table 2. The values for $n=2,3, \cdots, 25$ were obtained by numerical integration on an IBM 1410 computer. For this integration (3) was used, and the interval of integration was mapped into a finite interval by a simple change of variable. The resulting integral was evaluated, using Simpson's rule, with the increment chosen to assure that the truncation error in the final result would be negligible to eight significant digits. As a further check on the results so obtained, this numerical integration later was repeated with a smaller increment. In no case did the two resulting values differ by more than one unit in the eighth significant digit. The values of $M_{n}{ }^{(1)}$ for $n=20$,
$21, \cdots, 100$ were computed by use of the "asymptotic" expansion given in (5). The "overlap" of the two methods for $n=20,21, \cdots, 25$ was provided as a numerical verification of this "asymptotic" expansion. It was found that these two methods, gave results which differed (in the eighth significant digit) by thirteen units for $n=20$, four units for $n=21$, and not more than one unit for $n=22,23,24$, and 25.

Since the numerical integrations were computed in an ascending order, i.e., the integrand for $M_{n}{ }^{(1)}$ was multiplied by t in order to obtain the integrand for $M_{n+1}^{(1)}, n=2,3, \cdots, 24$, and, in view of the agreement indicated above, it is felt that all values in Table 2 are correct, except for possible rounding errors of one unit in the eighth significant digit.

North Carolina State University at Raleigh

1. H. Brenner \& R. M. Sonshine, "Slow viscous rotation of a sphere in a circular cylinder," Quart. J. Mech. Appl. Math., v. 17, 1964, pp. 55-63.
2. W. L. Haberman \& E. E. Harley, "Numerical evaluation of integrals containing modified Bessel functions," David Taylor Model Basin, Washington, D. C., Report 1580, March, 1964.
3. J. A. Roberts, "Approximate methods for the solution of certain dual Fourier-Bessel series relations," File No. PSR-24/1, Department of Mathematics, North Carolina State University at Raleigh, 1964. (Ph.D. dissertation.)
4. W. R. Smythe, "Charged sphere in cylinder," J. Appl. Phys, v. 31, 1960, pp. 553-556. MR 22, * 496.
5. W. R. Smythe, "Flow around a sphere in a circular tube," Phys. Fluids, v. 4, 1961, pp. 756-759. MR 23, * B96.
6. W. R. Smythe, "Charged spheroid in a cylinder," J. Mathematical Phys., v. 4, 1963, pp. 833-837. MR 26, * 7304.
7. W. R. Smythe, "Flow around the spheroid in a circular tube," Phys. Fluids, v. 7, 1964, pp. 633-638.
\rightarrow G. N. Watson, "The use of series of Bessel functions in problems connected with cylindrical wind-tunnels," Proc. Roy. Soc. London Ser. A, v. 130, 1930, pp. 29-37.
8. G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge Univ. Press, Cambridge, England and Macmillan, New York, 1944. MR 6, 64.

Bessel-Function Identities Needed for the Theory of Axisymmetric Gravity Waves

By Lawrence R. Mack

1. Introduction. Certain identities involving integrals of products of Bessel functions are required for analyses of finite-amplitude axisymmetric gravity waves [3], [4]. The specific identities needed through the third-order wave solution are of two distinct types. The first type equates to zero the sum of two or three integrals of products of several Bessel functions, all integrands in a particular identity being products of the same number of Bessel functions. Of the required identities of this type the one with products of two Bessel functions is trivial, while those whose integrands are products of three Bessel functions are obtainable from the results of Fettis [1]. Each identity of the second type equates an integral of the product of four Bessel functions to the sum of an infinite number of products of pairs of
[^2]
[^0]: Received December 15, 1964. Revised March 1, 1965.

 * The results presented in this paper were obtained as a part of research sponsored by AFOSR, ARO, and ONR through the Joint Services Advisory Group. The current grant is AFOSR-444-64.
 \dagger The notation is that of J. C. Cooke and C. J. Tranter, "Dual Fourier-Bessel series", Quart. J. Mech. Appl. Math., v. 12, 1959, 379-386.

[^1]: * The number in parenthesis indicates the power of 10 by which the tabulated value is to be multiplied, e.g. $a_{1}=7.500000000 \times$ $10^{-1}=.7500000000$.

[^2]: Received November 23, 1964.

